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Abstract

In general the study of the cough mechanism and sound in both animal and human is performed by
eliciting coughing in a reproducible way by nebulization of an irritating substance. Due to ventilation the
controlled evaporation-protocol causes artificial noises from a mechanical origin. The resulting
environmental low-frequency noises complicate cough time–frequency features. In order to optimize the
study of the cough-sound the research described in this paper attempts on the one hand to characterize and
model the environmental noises and on the other hand to evaluate the influence of the noise on the time–
frequency representation for the intended cough sounds by comparing different de-noising approaches.
Free field acoustic sound is continuously registered during 30 min citric acid cough-challenges on individual
Belgian Landrace piglets and during respiratory infection experiments, with a duration of about 10 days,
where room-ventilation was present.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The modelling and optimal representation of naturally occurring phenomena like the free field
acoustical cough-sound under study is often attempted with the time–frequency harmonic analysis
[1–3]. In practise however there is commonly found a discrepancy between the ‘acoustic’ model
from the noisy signal and the clean signal leading to a robustness problem see e.g., Refs. [4,5].
Therefore this paper intends a quantitative comparison of different de-noising approaches for
several signal-to-noise ratios (SNR) of realistic environmental noises by means of optimized error
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measures and the error signal between the original (x) and filtered ( #xd) signal. In general the
de-noising approach is as follows:

(1) transform time-features x: y ¼ Wx;
(2) select threshold d for de-noising in the transform domain;
(3) de-noise by shrinking (D) of the coefficient y in the transform domain: #yd ¼ Ddy;
(4) inverse transform to time domain: #xd ¼ W�1 #yd;
where the symbols are defined in Appendix A.

2. Methods

2.1. High-pass filter

The signal xðtÞ; corrupted by acoustical environment noises, can be written as follows, with sðtÞ
the original signal and nðtÞ Gaussian noise. The signal sðtÞ is recovered by inverting the
convolution integral.

xðtÞ ¼
Z b

a

lðt � tÞsðtÞ dtþ nðtÞ: ð1Þ

A comparison with more advanced techniques is described further in this section, and xðtÞ is
assumed to be approximated as in Eq. (1) with the convolution kernel lðtÞ being a high-pass filter
(HPF).

2.2. Discrete wavelet decomposition

The basic theory of wavelet representation can be found in many papers (see e.g., Ref. [6]). In
discrete (multiresolution) wavelet analysis the discrete signal xðtÞAl2 is determined by

xðtÞ ¼
XN

k¼�N

a1ðkÞf1;kðtÞ ð2Þ

which is decomposed on different scales as in the following equation, where cj;kðtÞ are discrete
analysis wavelets and fK ;kðtÞ are discrete scaling functions which are all translations of one father
function fðtÞ; djðkÞ are the detailed signals (wavelets coefficients) at scale 2j; and aK ðkÞ is the
approximated signal (scaling coefficients) at scale 2K :

xðtÞ ¼
XK

j¼1

XN
k¼�N

djðkÞcj;kðtÞ þ
XN

k¼�N

aK ðkÞfK ;kðtÞ: ð3Þ

For the signal xðtÞ the wavelet basis functions cj;kðtÞ are localized in time and translate dilations of
one mother wavelet cðtÞ: The signal’s discrete wavelet transformation (DWT), presented in
Eq. (3), allows a sparse signal-representation within the detailed wavelet coefficients indicating
signal-singularities at scale 2j: So a one-scale representation is decomposed into a sparse and
multiscale representation and wavelet coefficients return both time and frequency (or inverse
scale) information resulting in a multi-resolution analysis from a coarse to a higher resolution
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approximation. At each scale localization in time and frequency space is restricted by the
Heisenberg uncertainty principle.
The discrete wavelet transform can be implemented by the scaling and wavelet filters, the

following equations, being quadrature mirror filters (QMF) [7]:

hðnÞ ¼
1ffiffiffi
2

p /fðtÞ;fð2t � nÞS; ð4Þ

gðnÞ ¼
1ffiffiffi
2

p /cðtÞ;fð2t � nÞS ¼ ð�1Þnhð1� nÞ: ð5Þ

The estimation of the detail signal at level j will be done by convolving the approximate signal
at level ð j � 1Þ with the coefficients gðnÞ: Convolving the approximate signal at level ð j � 1Þ with
the coefficients hðnÞ gives an estimate for the approximate signal at level j: The decomposition
scheme involves retaining every other sample of the filter output or a dyadic decomposition
structure which is constant for all signals.

2.3. De-noising the signal

Assuming that every wavelet coefficient over all scales contains noise, non-linear de-noising by
soft-thresholding is performed, i.e., discarding the details exceeding a certain limit [8]. The soft-
thresholded wavelet coefficients are defined in the following equations where d is the applied soft
threshold:

ZðdjðkÞÞ ¼ signðdjðkÞÞðjdjðkÞj � dÞ; if jdjðkÞj > d; ð6Þ

ZðdjðkÞÞ ¼ 0; if jdjðkÞjpd: ð7Þ

The wavelet coefficients whose absolute values are lower than the threshold are first set to zero,
and then the remaining non-zero coefficients are shrunk towards zero.

The assumed model for a noisy signal is xðtÞ ¼ sðtÞ þ eðtÞ; where sðtÞ is the noise-free signal
and eðtÞ the white or non-white noise. The performance of the de-noising methods is evaluated
from the simulations with l2-norm given by the following equation with #xðtÞ the de-noised
signal xðtÞ:

jjs � #xjj2 ¼
X

t

jsðtÞ � #xðtÞj2
 !1=2

: ð8Þ

2.4. Threshold selection

The soft threshold d is selected for each signal using four threshold estimating procedures:
SURE threshold (dS), universal threshold (dU ), minimax principle (dM) and the generalized cross
validation (GCV) (dG). In the ideal case the optimal threshold should minimize RðdÞ or the mean
squared error (MSE) given by the following equation, with #xd the de-noised signal x ¼ s þ e and
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taking the wavelet transform Wx ¼ Ws þ We or y ¼ z þ v:

RðdÞ ¼
1

N

XN

k¼1

ð #xdk � skÞ
2: ð9Þ

The Stein unbiased risk estimate (SURE) [9] is an adaptive threshold selection rule defined
below as

SUREðdSÞ ¼
1

N

XN

k¼1

ð #ydk � ykÞ
2 þ 2s2

N1

N
� s2; ð10Þ

where y denotes the DWT of x; #yd the wavelet transform after thresholding, N1 the number
of samples with magnitude above the threshold and N is the number of samples in the signal
vector.
In case of non-white correlated noise, s is estimated as the standard variation of the noise

estimated from the scale with the highest resolution in the decomposition of each signal. With this
approach obtaining risks and minimizing them with respect to dU values give a threshold
selection. The method is adaptive through searching a threshold level for each wavelet
decomposition level. The universal threshold approach (uni) calculates a fixed threshold with
respect to the length of the signal, and the estimated threshold is given by dU ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logeðNÞ

p
s [10].

The minimax principle applies a fixed threshold dM ¼ ð0:3936þ 0:1829 logðNÞÞs to produce a so-
called minimax performance for mean square error against an ideal case [10]. The GCV is another
approximation of the MSE and defined as in Eq. (11) with N0 the number of wavelet coefficients
that is replaced by zero [11]. Note that no estimation of s is necessary:

GCV ðdGÞ ¼
ð1=NÞ

PN
k¼1 ð #ydk � ykÞ

ðN0=NÞ2
: ð11Þ

3. Signals and acoustical environment

Coughing in individual Belgian Landrace piglets (10 kg) is elicited either by nebulization of an
irritating substance ([1], and the references therein), or by induction of a controlled and
reproducible respiratory infection protocol [12]. Example acoustical free field cough-signals, sðnÞ;
are registered (22 kHz) immediately after nebulization of the irritating substance in the absence of
disturbing noises. In the following, these example sounds are referred to as a chemical cough,
schem: Fig. 1 shows respectively the time and fast Fourier transforms giving the power spectral
density (PSD) for three examples of schem: Due to the presence/need for ventilation a controlled
evaporation-protocol involves artificial noises from a mechanical origin. Three occurring distinct
types of experimental ventilation noises, eðnÞ with n ¼ 1;y;N; are individually recorded. Firstly
the noise accompanying the nebulization, enebu; of the irritating substance into the closed
laboratory installation of dimensions 2000� 800� 950 ðl � w � hÞ: Secondly, the noise due to
preserve air-circulation, ecirc; in the laboratory installation and thirdly the ventilation present in
the room, eroom; containing the laboratory installation is recorded. Fig. 2 shows, respectively, the
time and the fast Fourier transforms giving the power spectral density (PSD) for each of the

ARTICLE IN PRESS

A. Van Hirtum, D. Berckmans / Journal of Sound and Vibration 266 (2003) 667–675670



ARTICLE IN PRESS

0  0.09 0.18 0.27
-1

0

1

0 2000 4000 6000 8000 10000
-40

-30

-20

-10

0

0  0.09 0.18 0.27
-1

0

1

no
rm

al
is

ed
 a

co
us

tic
al

 s
ig

na
l

0 2000 4000 6000 8000 10000
 -40

 -30

 -20

 -10

0

po
w

er
 s

pe
ct

ru
m

 m
ag

ni
tu

de
 (

dB
)

0  0.09 0.18 0.27
 -1

0

1

time (s)
0 2000 4000 6000 8000 10000

 -40

 -30

 -20

 -10

0

frequency (Hz)

Fig. 1. Time-signal-amplitude versus number of samples and corresponding power spectral magnitude (dB) frequency

features (Hz) for three examples of schem:
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Fig. 2. Time-signal-amplitude versus number of samples and corresponding power spectral magnitude (dB) frequency

features (Hz) for enebu; ecirc and eroom:
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distinct noises. As expected for noises of mechanical origin, the distinct ventilation noises are
clearly low-frequency coloured noises.
In order to study the influence of realistic artificial environmental noises on the example cough-

sounds the cough-signals, sðnÞ; are additively corrupted with environmental noise, eðnÞ: Several
SNR between 2 and 20 dB are attempted. As already mentioned in Section 2.4 the noisy signal,
xðnÞ; is assumed to be modelled as in the following equation where jj � jj denotes the l2 norm.

xðnÞ ¼ sðnÞ þ reðnÞ ) SNR ¼ 10 log10
jjsjj2

jjx � sjj2
: ð12Þ

4. Results and discussion

Different de-noising approaches are compared on 10 cough-sounds xchem;i ¼ schem;i þ rie for
SNR respectively 2, 5, 10, 15 and 20 dB in accordance with Eq. (12). De-noising is assessed firstly
with DWT soft thresholding described in Sections 2.2–2.4 and secondly by applying a well-known
HPF to the data xchem;i as described in Section 2.1. The results of both approaches are compared.
Evaluation of the MSE for the applied HPF as a function of the high-pass cut-off frequency dHPF

is illustrated in Fig. 3. RðdHPF Þ is computed for the noise-signals eroom; enebu and ecirc for SNR 2
and 20 dB: Note the typical form of RðdHPF Þ: For small values of the threshold dHPF ; the input
noise e still has an important contribution to the MSE of the result. If the threshold is large, the
shrinking operation induced by the de-noising deforms the original signal and causes a bias. Both
the left- and right-hand side of this figure show the best de-noising performance when d or the cut-
off frequency equals 7100 Hz: Since only for very corrupted signals (low SNR) the influence of
ecirc and enebu differs from eroom and only the last one is present during infection protocols, in the
rest of the paper only eroom is considered.
For wavelet-based de-noising the Coiflet wavelet function of order 5 [7] was chosen out of

the compactly supported orthogonal wavelet families for discrete wavelet analysis following from
the good de-noising performance mentioned in Ref. [4] for electrocardiogram-bio-signals.
Extensive discussion of the optimal wavelet choice for use in acoustic analysis is beyond the scope
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Fig. 3. RðdHPF Þ with threshold dHPF corresponding to the high-pass frequency for SNR=2 (left) and SNR=20 (right).
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of this paper. The choice of a particular wavelet is mainly determined by its number of vanishing
moments, its smoothness properties and its compact support, as well as its localization in the
frequency domain. In general, matching characteristics of the used wavelet analysis function with
expected signal-characteristics yields improved performance. The principle of threshold-selection
and de-noising presented in Section 2.4 is adequate for every wavelet choice. Table 1 shows the R
obtained for distinct SNRs for discrete wavelet decomposition with depth L ¼ 3 and HPF.
Increasing the wavelet decomposition depth to L ¼ 5 or 7 did not yield a better de-noising
performance.
Since noise is coloured, a level-dependent scaling of the thresholds was used for adjusting to the

non-white noise structure. In general, the GCV yields the best performance. However, both the
small performance differences and the best de-noising performance of HPF with a cut-off
frequency of 100 Hz indicate the absence of much signal-energy for the cough-sound in the low-
frequency domain. As a consequence, although very disturbing for human hearing, the presence
of ventilation or more general low-frequency ventilation disturbing sounds, does not influence the
cough-spectra to a high degree. This finding is very important to the analysis and time–frequency
characterization of the cough-sounds due to infection where eroom is always present and no noise-
free cough-signal is available. Moreover Table 1 shows the good performance of high-pass
filtering for acoustical environments with low SNR. Therefore, for cough-processing involving the
total frequency-range, e.g., real-time cough-recognition, it is appropriate to discard the low-
frequency range with linear HPF or to apply classical processing techniques as adaptive filtering in
case of well-situated specific sources. For higher signal-to-noise ratios the DWT approach using
generalized cross validation for threshold selection yields the best de-noising performance.
Therefore in less noisy acoustic environments aiming specific feature-extraction mostly present in
the non-white noise-corrupted part of the spectrum, e.g., pitch present in parts of the cough-sound
[2], de-noising with DWT multi-resolution decomposition in time and frequency can be motivated
because of its scale-adaptivity, level-dependent thresholding and non-linearity.
De-noising established by maximum SNR solution (or minimum mean square error solution) as

incorporated in the wavelet and GCV methods are well accepted in image-processing [6], but
questionable for speech-processing where sound-quality is commonly assessed with auditive
quality being the most important de-noising criterion for speech-synthesis. However to study
the cough-sound the ‘source of sound’ or sound production is of much more interest and
importance than ‘sound-perception’ and therefore a more objective quality measure is preferred
above the sensitivity of human hearing.
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Table 1

R for distinct eroom SNR for a Coiflet wavelet DWT (order 5, depth L ¼ 3) and HPF

SNR (dB) SURE uni minimax GCV HPF

2 0.55 0.76 0.69 0.53 0.48

5 0.40 0.65 0.57 0.37 0.48

10 0.25 0.55 0.46 0.21 0.48

15 0.18 0.51 0.41 0.12 0.48

20 0.14 0.50 0.39 0.07 0.48
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5. Conclusion

In this paper, noise-free cough signals are artificially corrupted with realistic low-frequency
ventilation noises. The performances of several variations of de-noising including thresholding
rules were compared for soft thresholding. The performed DWT multi-resolution decomposition
in time and frequency is motivated because it is well suited for removing specific unwanted signal
components that may vary spectrally. For acoustical environments with low SNR due to noises of
mechanical origin a simple high-pass filtering yields a good performance. It is concluded that the
presence of low-frequency disturbing sounds does not influence the spectral characteristics of the
cough-sound to a high degree. For higher signal-to-noise ratios, in general, the DWT approach
using generalized cross validation for threshold selection yields the best de-noising performance.
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Appendix A. Nomenclature

x; xi noisy input (general index i)
s; si original, noise-free signal
e; ei noise
n; ni Gaussian noise
y; yi noisy wavelet coefficients
W forward wavelet transform
W�1 inverse wavelet transform
d smoothing parameter, threshold
D shrinking transform
#yd; #ydi noisy wavelet coefficients after thresholding
#xd; #xdi output of threshold algorithm
N number of data points in a discrete final signal
R mean squared error (MSE)
l convolution kernel
dHPF high-pass frequency
dS sure threshold
dU universal threshold
dM minimax threshold
dG generalized cross validation (GCV) threshold
s2 variance
N0 number of noisy wavelet coefficients below threshold
N1 number of noisy wavelet coefficients above threshold
fðtÞ primal scaling ( father) function

ARTICLE IN PRESS

A. Van Hirtum, D. Berckmans / Journal of Sound and Vibration 266 (2003) 667–675674



cðtÞ primal wavelet (mother) function
g high-pass filter in filter bank, coefficients in wavelet equation ( primal)
h low-pass filter in filter bank, coefficients in dilation equation ( primal)
l2 Hilbert space of square summable sequences
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